CIrculation systems over China

Essay by ShoemachUniversity, Bachelor'sB+, March 1997

download word file, 7 pages 3.8

Downloaded 52 times

Introduction:

The Earth's atmosphere is in continuous motion: movement which is attempting to balance the constant differences in pressure and temperature between different parts of the globe. It is this motion which carries water from the ocean to the continents to provide precipitation and moves heat energy from the tropical regions toward the poles, warming the high latitudes. It is this circulation which plays a basic part in maintaining a steady state in the atmosphere and generating the climatic zones which characterise different parts of the earth.

China, from its latitudinal location, mostly belongs to the mid-latitudes, with a small part to the low latitudes. It is located at south of Siberia and the north of the tropical Pacific. At this distinctive location, the country is affected by the alternate seasonal expansion and contraction of the polar continental highs and tropical maritime air masses, along with the seasonal shifts of the overhead sun.

These changes in the pressure systems over Asia generate the unique Asian monsoon circulation which prevails over China throughout the year.

Surface Pressure Field and Winds:

For any fluid to initiate movements, pressure gradient must exists. Therefore, for a close understanding of the circulation system that operates over China, we should start from discussing the seasonal pressure distribution at sea-level over the Asia-Pacific region, which is the driving force for the air movements in China. Most clearly to be seen, the largest difference in the atmospheric pressure occurs between winter and summer, whereby January and July can be considered as representative months.

In January, a typical cold anticyclone with central pressure above 1,040 hectopascals (hPa) developed over mid-Siberia and Mongolia (Mongolian High); while a strongly established cyclone over the north-western Pacific Ocean (Aleutian Low). Since both pressure systems practically lie in the same latitude...